

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1CR

Question number			Answer	Notes	Marks
1	(a)	(i)	W		1
		(ii)	V		1
		(iii)	Z		1
	(b)	(i)	the number of protons (in the nucleus)	IGNORE reference to electrons	1
				ALLOW amount of protons	
		(ii)	(the sum of) the number of protons and neutrons (in the nucleus)	ALLOW amount of protons and neutrons	1
				total	for question = 5

Question number	Answer	Notes	Marks
2 (a)	oxygen	ALLOW O ₂	1
(b)	M1 carbon dioxide / CO ₂	answers can be in either order	2
	M2 water / H ₂ O	ACCEPT water vapour	
		ALLOW steam	
(c) (i)	there is a limited supply of air / oxygen OWTTE	ALLOW not enough air/oxygen	1
(ii)	carbon monoxide reduces the capacity of blood to transport oxygen OWTTE	ACCEPT correct references to haemoglobin	1
		ALLOW produces carboxyhaemoglobin	
(d)	substitution	ALLOW redox (reaction)	1
		total for o	question = 6

Quest numl		Answer	Notes	Marks
3 (a)	(i)	filtration		1
	(ii)	fractional distillation		1
(b)		M1 (two) different atoms / elements	ACCEPT atoms/elements of silicon and oxygen	2
		M2 joined / bonded together	REJECT M2 intermolecular forces / ionic bonds	
(c)	(i)	5 / five		1
	(ii)	788		1
(d)		M1 (3 ÷ 18) × 100		2
		M2 16.7%	ALLOW ecf from M1	
			e.g. (3 ÷ 15) × 100 = 20% scores 1 mark	
			ALLOW 2 or more sig figs as long as a percentage sum and correctly rounded.	
			hat-l f	wastian 0
			total for o	question = 8

Question number	Answer	Notes	Marks
4 (a)	any two from:		2
	M1 floats	M1 and M2 moves on the surface	
	M2 moves	the surface	
	M3 melts / turns into a ball /sphere		
	M4 gets smaller / disappears	ALLOW sodium dissolves	
	M5 white trail	IGNORE effervescence / bubbling / fizzing	
(b)	M1 do a flame test	ALLOW a description of the flame test	2
	M2 yellow (flame)	ALLOW orange (flame)	
(c) (i)	(they have the) same number of outer shell electrons / one outer shell electron		1
(ii)	as the atomic radius increases they get more reactive OWTTE		1
		total for o	question = 6

Question number	Answer	Notes	Marks
5 (a) (i)	clockwise from bottom left		3
	M1 solvent	ALLOW water	
	M2 solvent front		
	M3 chromatography paper	ALLOW paper	
	baseline drawn in pencil food colouring Diagram 1	ALLOW chromatogram	
(ii)	pencil is not soluble / insoluble	ACCEPT pencil will not dissolve ALLOW pencil will not run (up the chromatogram)	1
(b) (i)	B (W and Y)		1
	A is not the correct answer because W and X do not have a spot at the same height C is not the correct answer because X and Z do not have a spot at the same height D is not the correct answer because Y and Z do not have a spot at the same height		
(ii)	M1 distance moved by the dye from 1.1 to 1.4 (cm) distance moved by the solvent 6.5 (cm)		2
	M2 distance moved by the dye ÷ distance moved by the solvent and correctly evaluated	e.g. 0.17 / 0.18 / 0.2(0) / 0.22	
		ALLOW any number of sig figs as long as it is correctly rounded.	
		ALLOW ECF from M1	
		total for	question = 7
		total for t	lacstion = 1

Qu	estion		N	
	ımber	Answer	Notes	Marks
6 ((a)	M1 (a substance/a fuel that) when burned	ALLOW burns / combusts / catches fire	2
		M2 releases heat (energy) / thermal energy	/ Catches fire	
((b) (i)	temperature at the start = 20.4 °C	ALLOW ECF from incorrect temperature	2
		highest temperature reached = 77.6 °C	reading	
	(ii)	M1 150 × 4.2 × 57.2		2
		M2 36 036 (J)	ALLOW 36 000 if M1 is scored	
			36 036 with no working scores 2	
			ALLOW ECF from M1 as long as the 3 values are multiplied	
	(iii)	M1 36.036 kJ	ALLOW 36 kJ	4
		M2 amount of ethanol = 2.3 ÷ 46 OR 0.05 (mol)		
		M3 36.036 ÷ 0.05 OR 720.720 (kJ)	M3 subsumes M1 and M2	
		OR		
		M3 36036 ÷ 0.05 (J)	ALLOW M3 to 2 sig figs	
		M4 -720 (kJ/mol)	ALLOW ECF M4 with 2 sig figs and a - sign	
			Correct answer without working scores 4 marks	
((c)	any one from		1
		heat absorbed by the metal can		
		incomplete combustion		
		heat lost to the surroundings	ALLOW heat loss	
			total for qu	estion = 11

Quest numb		Answer	Notes	Marks
7 (a)	(i)	measuring cylinder	ALLOW burette / pipette / syringe	1
			REJECT gas syringe	
	(ii)	(the) zinc / Zn / it is in excess		1
	(iii)	so as little gas as possible is lost	ACCEPT to keep as much gas as possible	1
			ALLOW to avoid loss of gas / so gas does not escape	
	(iv)	any one from		1
		no further effervescence / bubbles / fizzing		
		no more gas collects in the syringe	ALLOW gas syringe does not move	
(b)	(i)	M1 calculation of gradient OR 50 ÷ 150	triangle needs to be drawn on graph for M1	3
		M2 0.33	ALLOW ECF from M1	
		M3 units cm ³ /s	ACCEPT cm ³ s ⁻¹	
	(ii)	from 0 to 60 s		6
		M1 gradient is steepest		
		M2 because there are most acid particles (per unit volume) / most collisions (per unit time) / most frequent collisions	ACCEPT because concentration is greatest / highest	
		from 60 to 150 s		
		M3 the curve becomes less steep		
		M4 because there are fewer particles (per unit volume) / fewer collisions (per unit time) / fewer frequent collisions	ACCEPT because concentration is lower	
		from 150 to 240 s		
		M5 the reaction has stopped / curve levels off/becomes flat/plateaus	ALLOW the volume of gas becomes constant	
		M6 because the (sulfuric) acid has been used up		
			total for qu	iestion = 13

Question			
number	Answer	Notes	Marks
8 (a)	a description that links any 4 of the following points		4
	M1 crude oil is heated / vapourised	ALLOW boiled	
	M2 the vapour enters the lower part / bottom of the column		
	M3 there is a temperature gradient in the column	ACCEPT cooler at the top and hotter at the bottom	
	M4 the vapours rise up the column until they condense	Boccom	
	M5 at a height where the boiling point of the vapour is lower than the temperature in the column	ALLOW the fractions are separated according to their boiling point	
(b)	an explanation that links any 4 of the following points		4
	M1 fractional distillation of crude oil produces more long chain hydrocarbons than can be used directly	ALLOW is a lower demand for long chain hydrocarbons / a higher demand for short chain hydrocarbons	
	M2 (cracking) produces shorter (chain) alkanes	ALLOW petrol / gasoline	
	M3 which are more flammable/ more useful as fuels	M3 dep on M2	
	M4 (cracking) produces alkenes		
	M5 which are used to make polymers/plastics	M5 dep on M4	
(c)	M1 fuels contain sulfur	IGNORE C / CO / CO ₂ and any reference to global warming etc.	3
		REJECT nitrogen for M1	
	M2 which burns producing sulfur dioxide		
	M3 causing acid rain	ALLOW effects of acid rain	
		M3 dep on M1 or M2 or NO ₂ or SO ₃	
		total for qu	estion = 11

Question number	Answer	Notes	Marks
9 (a) (i)	M1 NaCl	ACCEPT Na⁺Cl⁻ / ClNa	3
	M2 ZnO	ACCEPT Zn ²⁺ O ²⁻ / OZn	
	M3 (NH ₄) ₂ SO ₄	ACCEPT (NH ₄ ⁺) ₂ SO ₄ ²⁻ /SO ₄ (NH ₄) ₂	
		REJECT any incorrect charges	
		Penalise once only for incorrect case or subscripts / superscripts	
(ii)	zinc sulfate		1
(b) (i)	M1 2 bonding electrons	ALLOW dots, crosses or any combination	2
	M2 rest of the molecule correct	M2 dep on M1	
	H CI		
(ii)	M1 magnesium ion	ALLOW dots, crosses or any combination Only 1 mark max in M1	3
		and M2 if they only show the outer electrons, as the question requires the	
	M2 chloride ion	electronic configurations	
	M3 Mg ²⁺ and Cl ⁻		

(iii)	An explanation that links any 5 of the following points		5
	M1 hydrogen chloride is simple molecular / simple covalent	ALLOW molecular covalent	
	M2 magnesium chloride is giant ionic / ionic lattice	ALLOW giant structure if ions are mentioned	
	M3 strong electrostatic attraction between (oppositely charged) ions	ALLOW strong ionic bonds	
		No M3 if any mention of covalent bonds or intermolecular forces in magnesium chloride	
	M4 in hydrogen chloride there are weak intermolecular forces / weak forces between molecules	REJECT weak forces between bonds	
	M5 (much) more energy is required to break the (ionic) bonds in ${\rm MgCl_2}$ than to overcome the (intermolecular) forces in HCl	REJECT any reference to breaking covalent bonds in HCl or MgCl ₂	
		total for qu	estion = 14

Question number	Answer	Notes	Marks
10 (a)	M1 a catalyst provides an alternative pathway / route		2
	M2 of lower activation energy		
(b) (i)	conical flask	ALLOW flask	1
(ii)	M1 filter out the manganese(IV) oxide		3
	M2 allow it to dry		
	M3 reweigh the catalyst, the same mass should be left / mass is still 1 g		
		total for o	question = 6

Question number	Answer	Notes	Marks
11 (a)	has only one type of atom	ACCEPT only made up of carbon atoms	1
(b)	M1 (attraction between) a shared pair of electrons		2
	M2 and nuclei	do not accept nucleus	
	OR	nuclei must be plural	
	M1 a shared pair of electrons		
	M2 and (attraction between) nuclei	do not accept nucleus nuclei must be plural	
(c) (i)	M1 delocalised electrons	No marks if mention of ions / molecules in	2
	M2 (electrons) can move / flow (throughout the structure)	graphite	
(ii)	M1 (diamond is hard because) it has a 3D lattice/rigid lattice /tetrahedral lattice /every carbon is bonded to four other carbons	ALLOW 3D/ rigid/ tetrahedral structure	4
	M2 in diamond, the bonds need a lot of energy to break	REJECT mention of intermolecular forces in diamond for M1 and M2	
	M3 (graphite is soft because) it has layers	ALLOW sheets	
	M4 which can slide over one another	IGNORE intermolecular forces in graphite	
		M4 dep on M3	
(d)	M1 calculation M _r of C _x		3
	M2 M _r ÷ 12		
	M3 answer given as an integer		
	exemplar		
	M1 $1.40 \times 10^{-21} \times 6.02 \times 10^{23}$ OR 842.8	ALLOW any number of significant figures from 2	
	M2 842.8 ÷ 12 (= 70.23)	ALLOW ECF if division by atomic number 6	
	M3 70	Answer of 70 without working scores 3	
		total for qu	estion = 12

Question number	Answer	Notes	Marks
12 (a)	$\textbf{2}TaCl_5(s) + \textbf{5}H_2(g) \rightarrow \textbf{2}Ta(s) + \textbf{10}HCl(g)$	ALLOW multiples or fractions	1
(b) (i)	the last (3) masses are the same	ALLOW mass does not change / mass becomes constant	1
(ii)	M1 mass of chlorine = 1243 (kg)		3
	M2 1 267 000 ÷ 181 and 1 243 000 ÷ 35.5	ALLOW calculation done in kilomoles e.g. 1267 ÷ 181 and 1243 ÷ 35.5	
	M3 7000 moles of tantalum and 35 014 moles of chlorine (so 1:5 ratio)	e.g. ratio 7: 35 moles M3 subsumes M1 and M2	
		no M2 or M3 for upside down calculation or use of atomic numbers	
(c) (i)	M1 carbon is oxidised and tantalum oxide is reduced M2 carbon gains oxygen and tantalum oxide loses oxygen OR M1 carbon gains oxygen and is oxidised M2 tantalum oxide loses oxygen and is reduced	Penalise tantalum is reduced or tantalum loses oxygen once only REJECT tantalum loses oxygen and is reduced ALLOW correct symbols	2
		and formulae throughout ACCEPT correct changes in oxidation numbers	

(ii)	M1 (5 × 2000 =) 10 000 moles of carbon is needed	(12 × 2000 =) 24 000 g	2	
	M2 (10 000 × 12 =) 120 000 g of carbon is needed (which is less than 500 000 g)	(5 × 24 000 =) 120 000 g of carbon is needed		
	OR			
	M1 (500 000 ÷ 12) of carbon is 41 667 moles	(500 000 ÷ 5) is 100 000 g		
	M2 which is enough to react with (41 667 ÷ 5 =) 8333 moles of tantalum oxide	which is enough to react with (100 000 ÷ 12 =) 8333 moles of tantalum		
	OR	oxide		
	M1 (5 × 2000 =) 10 000 moles of carbon is needed			
	M2 (500 000 ÷ 12) is more than 41 667 moles of carbon			
(iii)	M1 (2 × 2000 =) 4000 moles of tantalum		2	
	M2 (4000 × 181=) 724 000 g of tantalum	ALLOW ECF for incorrect moles e.g. 2000 × 181 = 362 000 scores 1 1000 × 181 = 181 000 scores 1 4000 × 362 = 1 448 000 scores 1		
total for question = 11				